ELECTRON PARAMAGNETIC RESONANCE

= MAGNETIC RESONANCE TECHNIQUE

FOR STUDYING PARAMAGNETIC SYSTEMS

i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON

Examples of paramagnetic systems

Transition-metal complexes

Paramagnetic states:

Mn(II), Cu(II), Fe(III), Co(II), Co(IV), Cr(III), Cr(V), V(IV), Ni(I), Ni(III),

Extremely important role in biochemistry (metalloproteins, metals in biology) and in synthetic catalysis (inorganic chemistry)

Examples of paramagnetic systems

Organic radicals

In biology: tyrosyl radicals, cysteinyl radicals, ROS (reactive oxygen species: O_2^- , 'OH, ...), etc.

In organic and polymer chemistry In catalysis

Examples of paramagnetic systems

Paramagnetic states in solid-state physics

In semi-conductors: electron-hole creation, polaron states, dangling bonds
In nanoparticles: ferromagnetic states of metaloxide nanoparticles
Quantum dots
Rare-earth centers in refractive crystals

Examples of paramagnetic systems

Rendering diamagnetic systems paramagnetic

Spin labeling -> attaching a paramagnetic label to a diamagnetic molecule
Spin probing -> using a paramagnetic molecule as spy in diamagnetic surrounding

TYPES OF INTERACTIONS

TYPES OF INTERACTIONS

OBSERVABLE TYPES OF INTERACTIONS IN EPR

INFORMATION FROM EPR

- Quantification of paramagnetic molecules
 Signal intensity
- 2. Local geometric and electronic structure

INFORMATION FROM EPR

3. Molecular structures

INFORMATION FROM EPR

4. Dynamics

Spectral features depend on movement of paramagnetic center

Which dynamics in biomolecules do we probe in this way?

Side-chain reorientation
Helix dynamics
Protein rotational diffusion

Time frame that is partially overlapping with what is theoretically studied by molecular dynamics

RELAXATION TIMES

Electron spin-spin relaxations: T₂

Order of ns to a few μ s

Electron spin-lattice relaxations: T₁

Order of a few μ s to ms (often more in the order of nuclear T_2)

Often need to lower the temperature in order to see a signal (especially for transition-metals)

Pulses need to be short: microwave pulses (GHz frequencies!), a few ns in length

CW-NMR

Continuous irradiation of rf Fixed magnetic field Vary rf Detection of absorption of rf

DIFFERENT EPR TECHNIQUES

Continuous irradiation of mw Fixed magnetic field Vary rf Detection of absorption of rf

CW-EPR

Continuous irradiation of mw Fixed microwave frequency Vary magnetic field Detection of absorption of mw

DIFFERENT EPR TECHNIQUES

CW-EPR

Continuous irradiation of mw Fixed microwave frequency Vary magnetic field Detection of absorption of mw FT-EPR

Did not replace CW-EPR!!!

For most cases:

Excitation width of current pulses is too small to excite the full spectrum

(spectrum width determined by g anisotropy and zero field splitting)

CW-EPR Method of choice to determine largest interactions - g tensor - zero field splitting Spectrum is first derivative because of - large hyperfine values technical reasons Spectrum can be complex, especially for

solid state cases

DIFFERENT EPR TECHNIQUES

Magnetic fields depend on microwave frequency

X-band - 9.5 GHz Water-cooled electromagnet Sweep from 0 to 1.4 Tesla

W-band - 95 GHz Cryo magnet Sweep from 0 to 6Tesla

Pulsed EPR techniques => monitor smaller interactions

ESEEM techniques

(electron spin echo modulation techniques)
Only microwave pulses, one microwave frequency

ENDOR techniques

(electron nuclear double resonance techniques) Microwave and rf pulses

(think of heteronuclear NMR)

DIFFERENT EPR TECHNIQUES

Pulsed EPR techniques => monitor smaller interactions

Pulsed EPR techniques => monitor smaller interactions

(P)ELDOR techniques

(pulsed electron double resonance techniques)
Only microwave pulses, two microwave frequencies

(think of heteronuclear NMR)

Dipolar interactions

Inter electron spin distances Up till 8 nm

Often used method of this class:
DEER method

DIFFERENT EPR TECHNIQUES

EPR imaging techniques also exist!!

Limited in size (no whole-body scan for humans)

(e.g. Imaging of melanoma)